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Evidence against a three-phase point in a binary hard-core lattice model

Alain Verberkmoes and Bernard Nienhuis
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherland

~Received 29 March 1999!

Using Monte Carlo simulation, Van Duijneveldt and Lekkerkerker@Phys. Rev. Lett.71, 4264~1993!# found
gas–liquid–solid behavior in a simple two-dimensional lattice model with two types of hard particles. The
same model is studied here by means of numerical transfer-matrix calculations, focusing on the finite-size
scaling of the gaps between the largest few eigenvalues. No evidence for a gas–liquid transition is found. We
discuss the relation of the model with a solvable restricted solid-on-solid model of which the states obey the
same exclusion rules. Finally, a detailed analysis of the relation with the dilute three-state Potts model strongly
supports the tricritical point rather than a three-phase point.@S1063-651X~99!03208-0#

PACS number~s!: 05.50.1q, 64.60.Cn
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I. INTRODUCTION

The phase behavior of hard particles, in particu
spheres, as a simple model of interacting particles, has
ceived much attention. Computer simulations of monod
perse hard spheres show a first-order transition betwe
dilute disordered phase~fluid! and a dense ordered pha
~solid! @1–3#. The continuous translational symmetry of th
Hamiltonian remains intact in the fluid, but is broken to
discrete subgroup in the solid. Although a rigorous proo
lacking, this phase transition in the hard-sphere model is n
generally accepted. For bidisperse hard spheres the situ
is more complicated. The existence of several solid pha
has been established; see, for example,@4# and the reference
therein. The behavior in the fluid phase, however, is
known. Using the Percus–Yevick closure of the Ornste
Zernike equation, Lebowitz and Rowlinson@5# found misci-
bility in all proportions for all diameter ratios. More recent
however, Biben and Hansen@6#, using the Rogers–Young
closure, found a spinodal instability when the diameter ra
exceeds 5. Even so it might be that the fluid–fluid transit
is pre-empted by the fluid–solid transition, so that the form
does not actually occur. Thus it remains an open ques
whether bidisperse spheres can show a fluid–fluid ph
separation. More generally one may ask if gas–liquid–so
behavior can occur in binary mixtures with only hard-co
repulsion.

Motivated by this interest Van Duijneveldt and Le
kerkerker@7,8# studied a two-dimensional binary hard-co
lattice model. This model, introduced by Frenkel and Lo
@9#, consists of large and small hard hexagons on a triang
lattice, see Fig. 1. Every site can be empty or occupied b
large or small hexagon, and if it is occupied with a lar
hexagon all its direct neighbors must be empty. When
small particles are omitted, one regains the hard hexa
model @10#, which has been solved exactly by Baxt
@11,12#; it has a second-order ordering transition. Van Dui
eveldt and Lekkerkerker studied the binary model by me
of Monte Carlo simulation. They found three phases: dil
disordered ~gas!, dense disordered~liquid!, and ordered
~solid!. Fig. 2 shows this phase diagram, represented in te
of the fugacitiesz1 andz2 of the large and small hexagon
respectively.
PRE 601063-651X/99/60~3!/2501~9!/$15.00
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In this paper we study the same model by different me
ods. Our interest is in the qualitative, rather than quantitat
aspects of the phase diagram. We do not address the ge
question whether gas–liquid–solid behavior is possible
binary hard-core mixtures. The paper is organized as
lows: First, we briefly review the Monte Carlo approach
Van Duijneveldt and Lekkerkerker, and we give some ex
results. Then we describe our numerical transfer-matrix c
culations. Next, we discuss the relation of the model with
exactly solvable restricted solid-on-solid~RSOS! model and
with the dilute three-state Potts model. Finally, we propo
an explanation for the discrepancy between our results
those of Van Duijneveldt and Lekkerkerker.

II. MONTE CARLO SIMULATION AND EXACT RESULTS

Before we review the Monte Carlo method of Van Duij
eveldt and Lekkerkerker@7,8# and discuss some exact resul
we make the following notational conventions: the subscri
1 and 2 refer to the large and small hexagons, respectiv
the superscript 0 refers to the pure hard hexagon model;
symbol N without subscript is the number of sites and
generally omitted as an argument of the thermodyna
quantities.

We consider the semigrand canonical partition funct
Z(N1 ,z2) of large hexagons, whose numberN1 is fixed, and
small hexagons, whose fugacityz2 is fixed, onN lattice sites.
We may view the small hexagons as causing an effec
so-called depletion interaction@13# between the large hexa
gons. The question is then if this attractive depletion inter
tion is strong enough to induce a fluid–fluid transition. T
effective interaction can be expressed in the number of s
available for small hexagons, once the large hexagons h
been placed on the lattice. Interestingly, the sites availa

FIG. 1. Typical configuration of large and small hexagons.
2501 © 1999 The American Physical Society
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2502 PRE 60ALAIN VERBERKMOES AND BERNARD NIENHUIS
for small hexagons are exactly the sites where an additio
large hexagon could be inserted. Such sites are called fre
is easy to express the semigrand canonical partition func
Z(N1 ,z2) in terms of the canonical partition functionZ0(N1)
of the hard hexagon model and the probability distribut
p(NfuN1) for the numberNf of free lattice sites in the hard
hexagon model,

Z~N1 ,z2!5Z0~N1!Z8~N1 ,z2!, ~1!

where

Z8~N1 ,z2!5(
Nf

p~NfuN1!~11z2!Nf. ~2!

After taking logarithms this gives the free energy,

F~N1 ,z2!5F0~N1!1F8~N1 ,z2!. ~3!

Van Duijneveldt and Lekkerkerker determine the probabi
distributionp from canonical Monte Carlo simulations of th
hard hexagon model. To determine accurately the wing
the distribution an umbrella sampling technique is employ
They calculateF8 from p, and for fixedz2 fit a polynomial in
r1 : 5N1 /N to this quantity. They obtain the free energyF
from Eq. ~3!, using Baxter’s exact result@11,12# for F0 and
the fitted polynomial forF8. The fugacityz1 of the large
hexagons and the pressureP are calculated in the usual wa
from F. Finally phase equilibrium is determined by lookin
for phases with equalz1 and P but different r1 . As this
calculation is carried out for fixedz2 , z2 is also equal in the
phases. The resulting phase diagram is shown in Fig. 2
has three branches: liquid–solid, gas–solid and gas–liq
The branches meet at the three-phase point, atz1522.5 and
z251.89. ~Van Duijneveldt and Lekkerkerker use the ter
‘‘triple point,’’ but, as that suggests the coexistence of th
phases where three first-order transitions meet, we prefe
use the term ‘‘three-phase point.’’! The gas–liquid end poin
is located atz1513.3 andz251.36.

ExpandingZ8 to first order inz2 gives

Z8~N1 ,z2!511z2^Nf&N1

0 1o~z2!. ~4!

For a finite system we could have writtenO(z2
2) instead of

o(z2), but in the thermodynamic limit this is not valid at th

FIG. 2. Phase diagram in thez1–z2 plane calculated by Van
Duijneveldt and Lekkerkerker@7,8# from Monte Carlo simulations.
The lettersF, G, L, andS indicate the fluid, gas, liquid and soli
phase, respectively.
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phase transition of the hard hexagon model. Lekkerker
~unpublished! found that the averager f :5^Nf /N&N1

0 can be

calculated exactly, as follows. Adding one hexagon to a c
figuration ofN1 hexagons can be done inNf ways. By doing
this to all configurations ofN1 hexagons each configuratio
of N111 hexagons is obtained exactlyN111 times. Hence,

^Nf&N1

0 Z0~N1!5~N111!Z0~N111!, ~5!

which in the thermodynamic limit yields

r f5
r1

z1
. ~6!

This is an example of Widom’s famous particle-inserti
formula @14#. In the Appendix we apply this exact result i
the method of Van Duijneveldt and Lekkerkerker. In partic
lar, we show that the existence of a Van der Waals lo
cannot be concluded from its presence in the first order
proximant~4!.

As the first derivatives of the thermodynamic functio
with respect toz2 are known in this way, we shall now
attempt to calculate the locus of the phase transition in
order. The difference between the large and small hexag
is that two small hexagons may occupy neighboring sit
whereas two large ones may not. At smallz2 the density of
small hexagons is low, so that they will generally occur is
lated. Thus they cannot be distinguished from the large o
For the grand canonical partition function, this implies

Z~z1 ,z2!5Z0~z11z2!1o~z2!. ~7!

This suggests that the locus of the phase transition is g
by

z15z1
c2z21o~z2!, ~8!

where the superscriptc refers to the critical point of the pure
hard hexagon model. The particle densities follow also,

r1~z1 ,z2!5
z1

z11z2
r1

0~z11z2!1o~z2! ~9!

for the large hexagons, and similarly for the small on
Combining these results yields the density of the large he
gons at the phase transition,

r15S 12
z2

z1
cD r1

c1o~z2!. ~10!

Equations~8! and~10! cannot be derived rigorously from Eq
~7! alone, but we conjecture that they are nevertheless va

III. TRANSFER-MATRIX APPROACH

Now we study the model through its row-to-row transf
matrix. For practical reasons, we work with sawtooth rows
shown in Fig. 3. One advantage is that the high-den
ground state of the hexagons fits on the lattice~which has an
even number of sites!, whereas for straight rows it does s
only when the system size is a multiple of 3. Another adva
tage is that the transfer matrix can be built up by repeate
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adding one site, without increasing the total number of si
Periodic boundary conditions are imposed on the rows.
number of ‘‘teeth’’ is denoted byW, so a row contains 2W
sites and has lengthL5WA3. The largest few eigenvalue
of the transfer matrix~in the zero-momentum sector! were
calculated numerically forW52, . . . ,5, using the powe
method.

In the ordered regime there are in fact three coexist
ordered phases, corresponding to the three sublattices o
triangular lattice. They give rise to three eigenvectors of
transfer matrix, dominated by these ordered phases:
symmetric and two asymmetric for permutations among
ground states. The symmetric vector has the largest ei
valueL0 . The asymmetric vectors have a complex conjug
pair of eigenvaluesLM and LM* . In the relevant region of
the phase diagram the largest eigenvalues of the transfer
trix turn out to beL0, LM, andLM* , and another real eigen
value LT. The phase behavior can be diagnosed from
behavior of the gaps between the eigenvalues,DM :
5 lnuL0 /LMu andDT :5 lnuL0 /LTu, as the system sizeL tends
to infinity.

The gapDT is an inverse correlation length between de
sity fluctuations. In the absence of a phase transition,
bulk (L5`) value of this length is finite and the value fo
finite L approaches this bulk value whenL tends to infinity.
HenceDT tends to a nonzero limit. At a critical point th
bulk correlation length diverges and the value for finiteL is
proportional toL. As a consequence of scale invarianceDT
decreases as 1/L. At a first-order transition with a change i
the density, however,DT is not an inverse correlation length
The eigenvaluesL0 andLT are then asymptotically degen
erate. Their gapDT is related to the interfacial tension be
tween the coexisting phases. More precisely,DT decays as
exp(2sL), wheres is proportional to the interfacial tensio
@15#.

For the gapDM the situation is analogous. In the diso
dered regime, it is an inverse correlation length, here
tween fluctuations in the sublattice ordering. Thus the g
approaches a nonzero value asL grows. At a first-order tran-
sition between two disordered phases this correlation len
is generally different in the two phases. Therefore, the va
of DM undergoes a sharp change through the transition,
proaching a jump as the system sizeL increases. At a critica
point the bulk correlation length diverges, so thatDM decays
as 1/L whenL increases. In the ordered regime three pha
coexist, and the eigenvaluesL0 and LM ~and LM* ) are as-
ymptotically degenerate:DM decays exponentially withL. At
a first-order transition between an ordered and a disord
phase by the same tokenDM vanishes exponentially withL.

We shall now distinguish between two scenarios:~i! there
are two phases~fluid and solid! as in Fig. 4~a! and~ii ! there

FIG. 3. The transfer matrix adds one row~shaded! to the system.
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are three phases~gas, liquid, and solid! as in Fig. 4~b!. The
gaps should behave as follows. At fixedz2 , the gapDM
decreases with increasingz1 , whereasDT has a minimum at
the phase transition~s!. For low z2 @see the lower dashe
lines in Figs. 4~a! and 4~b!#, the scaled gapsLDM andLDT
will tend to a nonzero value whenL→` at the critical line.
For highz2 , see the upper dashed lines; this is no longer
case: both scaled gaps tend to zero whenL→` at the phase
transition, which is now first-order. On the middle dash
line in Fig. 4~b!, DM changes rapidly at the gas-liquid tran
sition. Furthermore,DT has two minima: at the gas-liquid
transition and at the liquid-solid transition. WhenL→`, the
minimum of the scaled gapLDT tends to zero at the gas
liquid transition, but to a nonzero value at the liquid–so
transition. Thus the gas-liquid transition in Fig. 4~b! can be
recognized from the appearance of a sudden change inDM
and a second minimum ofDT .

For z250.0,0.1, . . . ,3.0 the scaled gapsLDM and LDT
were plotted as a function ofz1 for W52, . . . ,5. Figures
5–8 show examples of this. We found no indication thatDT
has two minima. One could argue that two minima might
fused to a single one for these relatively small systems; h
ever, the sharpest and deepest minimum~at the gas–liquid
transition! is clearly absent. This pleads against the thr
phase scenario in favor of the two-phase scenario. We
saw no sudden change inDM . However, even if a gas-liquid

FIG. 4. ~a! Phase diagram with a fluid and solid phase. T
critical line ~fat! terminates at a tricritical point where the pha
transition becomes first-order~double line!. ~b! Phase diagram with
gas, liquid, and solid phases. The critical line~fat! meets the first-
order transition~double line! at the three-phase point.

FIG. 5. Scaled gapsLDM as a function ofz1 on the linez2

51.7.
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2504 PRE 60ALAIN VERBERKMOES AND BERNARD NIENHUIS
transition were present, the signal inDM might be hard to
detect.

The three-phase scenario can be obtained by introdu
an extra parameter into the model. Assign a weightk to
every lattice edge joining a small hexagon and an empty s
For k51 one recovers the original model. Fork50 any
contact between a small particle and an empty site is for
den. In this limit the model either contains no small hex
gons at all or is completely filled with them. The regim
without small hexagons still exhibits the hard hexagon tr
sition as long as 11z2 is smaller than the partition sum pe
site of the hard hexagon model. Beyond this value the ph
filled with small particles takes over. Thus the ordered a
disordered hard hexagon phases meet with the pure s
hexagon phase, where the phase transition between them
minates in a three-phase point. Fork close to zero, the mode
will still obey the three-phase scenario. HereDT is indeed
found to have two minima, see Fig. 9.~The maxima in this
figure at first sight seem to be crossings of eigenvalues, b
very close look reveals that they are, in fact, rounded.! This
supports our interpretation of the absence of a second m
mum in DT as evidence against the three-phase scenario

The locus in thez1–z2 plane of the phase transition ca
be estimated, for example, as the location of the minimum
DT . For fixedz2 the value ofz1 at which this gap takes its

FIG. 6. Scaled gapsLDT as a function ofz1 on the linez2

51.7.

FIG. 7. Scaled gapsLDM as a function ofz1 on the linez2

52.3.
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minimum was determined. The results forW55 andW56
are plotted in Fig. 10. In order to obtain the locus in t
r1–z2 plane the density of large hexagons was compu
using

r15z1

]

]z1
~2 ln L0!. ~11!

~It should be noted that for such smallW this does not seem
to be very accurate.! Figure 11 shows the result. We ob
served that for fixedz2 the graphs ofr1 versusz1 for differ-
ent system sizes pass approximately through one point.
could ask whether this is the critical point, as would be t
case in a self-dual model. The locus of the intersection of
graphs forW55 andW56 is shown in Fig. 11. Figures 10
and 11 also show the phase diagrams given by Van Du
eveldt and Lekkerkerker@8#.

First-order and second-order transitions are not easily
tinguished from each other by the numerical data. In b
casesDT has a minimum; only the dependence onL of the
depth of the minimum is different. Forz251.7, the graphs of
the LDM pass approximately through one point, see Fig.
The LDT have a minimum that increases slowly withL and

FIG. 8. Scaled gapsLDT as a function ofz1 on the linez2

52.3.

FIG. 9. Scaled gapsLDT as a function ofz1 on the linez2

51.3 in the model with extra parameterk50.6. The inset shows
the deep minima in more detail.
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PRE 60 2505EVIDENCE AGAINST A THREE-PHASE POINT IN A . . .
may converge to a nonzero value, see Fig. 6. This points
second-order transition. Forz252.3, the graphs ofLDM do
not pass neatly through one point, see Fig. 7. The minim
of LDT decreases withL and may vanish asymptotically, se
Fig. 8. This points to a first-order transition. The behavior
LDM and LDT changes gradually betweenz251.7 andz2
52.3. Thus the value ofz2 at the tricritical point is estimated
roughly to lie between 1.7 and 2.3.

By universality the limit values ofLDM and LDT at the
phase transition are 2pxM and 2pxT , respectively, with
xM52/15 andxT54/5 on the hard hexagon critical line (c
54/5), andxM52/21 andxT52/7 at the hard hexagon tri
critical point (c56/7), see, for instance,@16#. On the critical
line close to the critical point one expects to find the tricr
cal values for small system sizes, but the critical values
large sizes. The limits were also estimated from the graph
LDM andLDT for z250.0 ~not shown! andz251.7. Forz2
50.0 we foundxM'0.14 andxT'0.80. This is in good
agreement with the critical valuesxM52/15 andxT54/5.
For z251.7 we foundxM'0.13 andxT'0.3. This agrees
reasonably with the tricritical valuesxM52/21 and xT
52/7, which are expected for small system size near
tricritical point.

IV. RELATION TO AN A2
„2… RSOS MODEL

Some properties of the large-and-small hexagon mo
are common with an exactly solvable model. In order
make use of the exact solution we investigate if the t
models are ever parametrically close. The sites of the la
and-small hexagon model can be in three states: 0~empty!, 1
~large hexagon!, or 2 ~small hexagon!. For neighboring sites
the combinations 1–1 and 1–2 are excluded. The sam
true for theL57 case of the exactly solvableA2

(2) restricted
solid-on-solid model of Kuniba @17,18#. This is an
interaction-round-a-face model on the square lattice. Fo
suitable choice of its spectral parameter, the condition
neighboring sites extends to one of the diagonals of
square face. The Boltzmann weight of the square face t
factors into weights of the composing triangles:

FIG. 10. Locus in thez1–z2 plane of the minimum of the gap
DT for W55 (1) andW56 (3) and phase diagram of Van Duijn
eveldt and Lekkerkerker~solid line!. The asymptote~8! is also
shown.
a

m

f

r
of

e

el

o
e-

is

a
n
e

en

WS d c

a bD 5WS d

a bDWS d c

bD , ~12!

and these triangle weights are invariant under rotation,

WS c

a bD 5WS c b

aD 5WS b

c aD 5WS b a

cD
5WS a

b cD 5WS a c

bD , ~13!

so that the model is isotropic on the triangular lattice. T
model still has one parameter~the elliptic nome!, but this
solvable line stays away from our phase diagram. For
ample, at the critical point the triangle weights are

WS 0

0 0D 51, WS 0

1 0D 54.412,

WS 0

2 0D 53.903, WS 0

2 2D 53.129,

WS 2

2 2D 53.761,

which is not of the form

WS 0

0 0D 51, WS 0

1 0D 5z1
1/6,

WS 0

2 0D 5z2
1/6, WS 0

2 2D 5z2
1/3,

WS 2

2 2D 5z2
1/2.

FIG. 11. Locus in ther1–z2 plane of phase transition calculate
from W55 (1) and W56 (3), locus of the intersection of the
graphs forW55 andW56 of r1 versusz1 ((), and phase dia-
gram of Van Duijneveldt and Lekkerkerker~solid line!. The asymp-
tote ~10! is also shown.
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2506 PRE 60ALAIN VERBERKMOES AND BERNARD NIENHUIS
Application of the numerical transfer-matrix method fro
Sec. III to this critical model shows that it is in the tricritica
three-state Potts universality class.

V. RELATION TO THE DILUTE THREE-STATE
POTTS MODEL

The large-and-small hexagon model is intimately rela
to the dilute three-state Potts model@19#. Because this rela
tion gives insight in the phase diagram we will consider
here in more detail. On every sitej of a two-dimensional
lattice with coordination numberv lives a variablesj that
can take the values 0,1,2,3. Of these the statessj.0 take the
role of local occupancy of one of the three sublattices of
hard hexagon model, and the statesj50 is neutral or vacant
The Hamiltonian of the dilute Potts model is

H52 (
^ j ,k&

~dsj ,sk
1Kdsj ,0

dsk,0!2L(
j

dsj ,0
, ~14!

where the first sum is over nearest neighbor pairs of sites
the parameter space (K,L,T) the model has a line of tricriti-
cal points as well as a line of critical end points@19#, see Fig.
12. As we will argue below, it is fairly clear where thes
come together, namely, in the critical point of the four-st
Potts model,K50, L50, and T5Tc , where all the four
states are treated identically.

At T50 there is a dilute phase withsj50 when vK
12L.0, while the three dense, or ordered phases assoc
with sj51,2,3 coexist whenvK12L,0. These phases ex
tend to nonzero temperatures so that a first-order sur
separates the dilute region from the dense coexistence
gion. This first-order surface will not remain precisely
vK12L50 for T.0, but by symmetry it does include theT
axis,K5L50. At high temperature the coexistence region
bounded by a surface of three-state Potts critical poi
shaded gray in Fig. 12, where the line tension between

FIG. 12. Qualitative picture of the phase diagram of the dil
three-state Potts model. The dense coexistence region~back! and
the dilute region~front! are separated by the three-state Potts crit
surface~shaded! and the lower part of the first-order surface~not
shaded!. These surfaces meet at a line of three-state Potts tricri
points~left! and a line of three-state Potts critical end points~right!.
The upper part of the first-order surface~not shaded! separates a
dilute and a dense disordered phase. It is bounded by a line of
critical points. The fat dot indicates the four-state Potts criti
point.
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coexisting dense phases vanishes. This critical sheet m
join with the first-order surface in a line of multicritica
points, as they both form boundaries to the coexistence
gion.

The nature of this multicritical line depends on the sign
K, as follows. Along the first-order sheet we can distingu
two line tensions, namely, that between two different de
phases and that between a dense and the dilute phase. W
K,0 the interface between the dilute and the dense ph
costs less energy than that between two of the dense ph
However, on the critical surface the line tension between
dense phases vanishes. As a consequence all line ten
vanish simultaneously where the critical and first-ord
sheets meet asK,0. The separatrix between these two typ
of phase transition is thus a tricritical line. WhenK.0 the
dense-dense interface costs less energy than the dense-
interface, so there remains a positive line tension between
dilute phase and the dense phases where the first-order
meets the critical surface, and the dense-dense interfa
tension vanishes. This results in a critical end point scena
The three-state Potts critical sheet terminates where it
the first-order sheet. The first-order sheet extends beyond
line, separating a disordered dense phase from the d
phase. Obviously, atK50 the two scenarios come togethe
and we conclude that the tricritical curve and the critical e
curve as well as the critical line terminating the dilut
disordered phase transition all meet in the four-state P
critical point, marked as a dot in Fig. 12. This qualitativ
description of the phase diagram of Eq.~14!, though not
rigorous, is the simplest possible scenario, and has been
roborated by numerical studies@19#.

These considerations are of interest for the large-a
small hexagon model because that can be mapped on
model sufficiently similar to the dilute Potts Hamiltonia
~14! that the arguments can be carried over. We divide
triangular lattice into triangular blocks of three sites ea
indicated in Fig. 13~a!. Each block then has three site
which we label 1, 2, and 3. We assign a spin variablesj to
each block, as follows. When the sites in block j is occu-
pied by a large hexagon, the spin variable takes the va
sj5s, while in all other cases,sj50. For convenience of
notation we consider one block variables0 , in interaction
with six neighborssj with 1<u j u<3, as shown in Fig. 13~a!.

l

al

ng
l

FIG. 13. ~a! Large-and-small hexagon model can be mapp
onto a Potts-like model by grouping the sites into blocks of thr
The numbers indicate the labeling of blocks and of the sites wit
the blocks.~b! The big hexagon model can be mapped onto a Po
like model by dividing the sites into blocks of four. The numbe
indicate the labeling of the sites within the blocks. The blocks
numbered as in~a!.
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The blocksj with j .0 contain two sites neighboring the si
j of the central block, and the block2 j sits in the opposite
direction. To give an expression for the interaction we int
duce the variables

pi5~dsi ,0
1dsi ,i !~12ds2 j , j !~12ds2k ,k!, ~15!

wherei , j ,k is a permutation of 1,2,3. Note thatpi can only
take the values 0 and 1, and it signals if sitei of the central
block is free. The spin states 1, 2, and 3 have weightz1 , but
are excluded by some configurations of the neighbor
blocks by the factor

@12ds0 , j~12pj !#. ~16!

In other words the states05 j is not allowed whenpj50.
The weight of the spin states050 depends on the surround
ing blocks and is given by the expression

~11z2!p11p21p3. ~17!

If this model would be precisely the dilute Potts model w
Hamiltonian ~14! we could simply read off the value ofK
and its sign would conclusively decide between a tricriti
point versus a three phase point. The interaction is, of cou
much more complicated than that of the dilute Potts mod
but the overall effect is that some combinations of uneq
nearest neighbors are excluded or suppressed. As the s
is treated altogether different from the states 1, 2, and 3,
difficult to judge the sign of the effective couplingK in Eq.
~14!.

However, this problem can be resolved because there
model in the universality class and with the symmetry of
four-state Potts model, which can be mapped to a very s
lar model. Consider a one-species lattice gas on the trian
lar lattice in which not only first neighbors but also seco
neighbors ~at distanceA3) cannot be occupied simulta
neously. We will refer to this model as the big hexag
model. For large values of the fugacityz this model will be
in an ordered phase in which one out of four sublattices
occupied preferentially. At low fugacity the symmetry b
tween the sublattices is unbroken. The phase transitio
known to be in the four-state Potts universality class fr
the symmetry of its Landau–Ginzburg–Wilson Hamiltoni
@20,21#. We are not aware of studies giving the critic
fugacity of this model, but we have seen numerically tha
is about half the value of the hard hexagon model.

The big hexagon model can be mapped exactly ont
Potts-like model very similar to the model above, as e
pressed in Eqs.~16! and ~17!. Now we take blocks of four
sites as shown in Fig. 13~b!, one in each sublattice. It i
convenient to label the spins in each block by the number
1, 2, 3 as indicated. When the sitej in a block is occupied,
the block variable takes the valuej. In addition, when none
of the sites are occupied, the block variable is taken to b
Therefore, the weight of the statesj .0 is z and the weight
of state 0 will again depend on the states of the neighbo
blocks. We again consider a block variables0 interacting
with its neighbors, which are labeled in the same way as
-

g

l
e,
l,
l

te 0
is

a
e
i-
u-

is

is

it

a
-

0,

0.

g

in

the previous case. We will use again variablespi defined by
Eq. ~15!. The central site of the block 0 is free if and only
p15p25p351. Some combinations of states of neighbori
blocks are excluded, described by precisely the same exp
sion ~16! as before. However, also some combinations
next-neighboring blocks are excluded. For example, sitej of
block 2 j and sitek of block 2k in Fig. 13~b! are second
neighbors, so the combinations2 j5 j and s2k5k is ex-
cluded. We introduce a variable

q512ds21,1ds22,22ds22,2ds23,32ds23,3ds21,1

12ds21,1ds22,2ds23,3 . ~18!

Note thatq can only take the values 0 and 1; it signals
there are no pairss2 j5 j ands2k5k. If s0Þ0 thens2 j5 j
or s2k5k is already excluded by the interaction between
neighboring blocks 0 and2 j or 2k. Therefore, the exclu-
sion of the combinations2 j5 j ands2k5k can be taken into
account by including a factorq in the weight of block 0 in
state 0. This weight is then given by

q~11z!p1p2p3. ~19!

In this way any exclusion between sites of next-neighbor
blocks is absorbed in the weight of state 0 of the interven
block.

This resulting model is strikingly similar to the Potts-lik
model above. The exclusion rules for pairs of neighbor
blocks are identical and when we choosez15z, the weight
of the spin states 1, 2, and 3 is the same. In both models
weight of the state 0 depends on the configuration of its
neighbors, via expression~17! and ~19!, respectively. When
we further specify (11z2)35(11z) the weights fors050
are equal in the case thatp15p25p3 andq51. In particular,
they are equal when the surrounding blocks are also in s
0, because thenp15p25p351 andq51.

It is the exclusion and suppression of configurations w
unequal neighbors that determines an effective temperatuT
and couplingK in Eq. ~14!. The large-and-small hexago
model and the big hexagon model with the parameters as
above will have the same effective temperatureT, as all con-
figurations involving only spin statess.0 have the same
weight between the two models. Only when a block has
50, while one or more of its neighbors haves.0, the con-
figurational weights between the two models can be diff
ent. In all such cases the weight in the big hexagon mode
smaller than that in the large-and-small hexagon mod
which is easy to see from direct comparison of the expr
sions~17! and~19!. Therefore, we can confidently claim tha
the effective couplingK is the greater in the big hexago
model, as configurations with unequal neighbors of wh
ones50 are more strongly suppressed than in the large-a
small hexagon model. However, since the big hexag
model has the symmetry of the four-state Potts mod
clearly its effective couplingK50. Therefore, the effective
K in the large-and-small hexagon model is necessarily ne
tive, which, as argued above, results in a tricritical scena
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VI. DISCUSSION

The results of our transfer-matrix calculations provi
evidence against the three-phase scenario of Fig. 4~b! in fa-
vor of the two-phase scenario of Fig. 4~a!. This contradicts
the earlier findings of Van Duijneveldt and Lekkerkerk
@7,8#. We propose the following explanation. Van Duijn
eveldt and Lekkerkerker effectively calculate the free-ene
difference between the binary mixture and the pure h
hexagons. They then look for phases of equal pressure
fugacities but different composition. They do not calcula
the order parameter for the mixture. Their method has so
drawbacks. Firstly, it cannot detect second-order transitio
because these do not involve a jump in the particle densi
Secondly, it uses a polynomial fit for the free-energy diffe
ence, so that the total free energy still seems to posses
singularity of the pure hard hexagon model. Thirdly, wheth
P exhibits a Van der Waals loop or not may depend se
tively on p(NfuN1). Thus the locus of the liquid–solid
branch in their phase diagram is a spurious consequenc
the implicit assumption that the ordering transition rema
at fixedr1 for small values ofz2 . Their qualitative conclu-
sion that a gas–liquid transition is present relies on quan
tive properties of the calculated phase diagram, viz. the
cations of the various branches. Figure 10 suggests that
gas–liquid and gas–solid branch together form the t
fluid–solid line and that the critical point of their gas–liqu
branch is in fact the tricritical point. This agrees well wi
the fact that Figs. 10 and 11 show enhanced size depend
of the phase diagram near their gas–liquid critical po
However, this point is located atz251.36 ~and z1522.5),
whereas we estimate roughly 1.7,z2,2.3 for the tricritical
point. Being unable to present a satisfactory explanation
this discrepancy, we stress that our data do not sign
clearly determined locus of the tricritical point. It should al
be noted that in our transfer-matrix calculations only ve
small system sizes have been considered. Going to sig
cantly larger systems might allow for more definitive qua
titative statements, but this requires much greater comp
tional resources.

Other evidence comes from the relation with the dilu
three-state Potts model. The large-and-small hexagon m
can be mapped onto a Potts-like model. Another model,
big hexagon model, whose phase behavior is known,
also be mapped onto a Potts-like model. A comparison of
effective temperature and coupling constants between
large-and-small hexagon model on the one hand and the
hexagon model on the other hand indicates that the la
and-small hexagon model should follow the two-phase s
nario.
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APPENDIX

It is instructive to follow the method of Van Duijneveld
and Lekkerkerker using Eqs.~4! and ~6! instead of Monte
Carlo results. Calculating the pressure from Eq.~4! gives

P5P01S r f2
dr f

dr1
D z21o~z2!. ~A1!

Baxter @@12#, p. 451# lists expansions around the critica
point of several thermodynamic quantities of the pure h
hexagon model. Combining these expansions with Eqs.~6!
and ~A1! yields

P5H Pc1
25~A521!

2A4 5
sgn~r12r1

c!ur12r1
cu3/2

1O@~r12r1
c!2#J

1H 125A4 5~r1
c!2

2z1
c

ur12r1
cu1/21O~r12r1

c!J z21o~z2!.

~A2!

This suggests that for small nonzero values ofz2 the pressure
P would exhibit a Van der Waals loop, so that the transiti
becomes first-order as soon asz2 becomes nonzero. That thi
argument is not valid can be seen by considering, for
ample,

f z~x!5~x2z!3, ~A3!

which we view as a function ofx, parametrically dependen
on z. Expandingf to first order inz gives

f z~x!5x323x2z1o~z! ~A4!

and for all nonzero values ofz the functionx323x2z of x is
decreasing betweenx50 andx52z. It is, however, a first-
order approximant off z(x), which for all values ofz is an
increasing function ofx.
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