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Evidence against a three-phase point in a binary hard-core lattice model
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Using Monte Carlo simulation, Van Duijneveldt and Lekkerkerkehnys. Rev. Lett71, 4264(1993] found
gas-liquid—solid behavior in a simple two-dimensional lattice model with two types of hard particles. The
same model is studied here by means of numerical transfer-matrix calculations, focusing on the finite-size
scaling of the gaps between the largest few eigenvalues. No evidence for a gas—liquid transition is found. We
discuss the relation of the model with a solvable restricted solid-on-solid model of which the states obey the
same exclusion rules. Finally, a detailed analysis of the relation with the dilute three-state Potts model strongly
supports the tricritical point rather than a three-phase pp#1063-651X99)03208-0

PACS numbd(s): 05.50:+q, 64.60.Cn

[. INTRODUCTION In this paper we study the same model by different meth-
ods. Our interest is in the qualitative, rather than quantitative,
The phase behavior of hard particles, in particularaspects of the phase diagram. We do not address the general

spheres, as a simple model of interacting particles, has rétuestion whether gas—liquid—solid behavior is possible in
ceived much attention. Computer simulations of monodisbinary hard-core mixtures. The paper is organized as fol-
perse hard spheres show a first-order transition between l@ws: First, we briefly review the Monte Carlo approach of
dilute disordered phaséluid) and a dense ordered phase Van Duijneveldt and Lekkerkerker, and we give some exact
(solid) [1—3]. The continuous translational symmetry of the results. Then we describe our numerical transfer-matrix cal-
Hamiltonian remains intact in the fluid, but is broken to aculations. Next, we discuss the relation of the model with an
discrete subgroup in the solid. Although a rigorous proof isexactly solvable restricted solid-on-soli@SOS model and
lacking, this phase transition in the hard-sphere model is nowvith the dilute three-state Potts model. Finally, we propose
generally accepted. For bidisperse hard spheres the situati@® explanation for the discrepancy between our results and
is more complicated. The existence of several solid phasd§ose of Van Duijneveldt and Lekkerkerker.
has been established; see, for examglband the references
therein. The behavior in the fluid phase, however, is notl. MONTE CARLO SIMULATION AND EXACT RESULTS
known. Using the Percus—Yevick closure of the Ornstein—

Zernike equation, Lebowitz and Rowlins@®] found misci- .
bility in all proportions for all diameter ratios. More recently €Veldtand Lekkerkerkdi7,8] and discuss some exact results,

however, Biben and Hansd6], using the Rogers—Young W€ make the following notational conventions: the subscripts

closure, found a spinodal instability when the diameter ratigr @nd 2 refer to the large and small hexagons, respectively;

exceeds 5. Even so it might be that the fluid—fluid transitiont"€ SUPerscript O refers to the pure hard hexagon model; the

is pre-empted by the fluid—solid transition, so that the formeSYMPOlI N without subscript is the number of sites and is
does not actually occur. Thus it remains an open questiod€nerally omitted as an argument of the thermodynamic
whether bidisperse spheres can show a fluid—fluid phas%uam't'es' . , . . .
separation. More generally one may ask if gas—liquid—solid We consider the semigrand canonical partition function
behavior can occur in binary mixtures with only hard-core4(N1,22) of large hexagons, whose numbéy is fixed, and
repulsion. small hexagons, whose fugaciy is fixed, onN _Iattlce sites.
Motivated by this interest Van Duijneveldt and Lek- W& may view the small hexagons as causing an effective
kerkerker[7,8] studied a two-dimensional binary hard-core SO-called depletion interactidri3] between the large hexa-
lattice model. This model, introduced by Frenkel and Louis9ONS- The question is then if this attractive depletion interac-
[9], consists of large and small hard hexagons on a trianguldfon iS strong enough to induce a fluid—fluid transition. The
lattice, see Fig. 1. Every site can be empty or occupied by gffef:tlve interaction can be expressed in the number of sites
large or small hexagon, and if it is occupied with a |argeavallable for small hexagons, once the large hexagons have
hexagon all its direct neighbors must be empty. When thdeen placed on the lattice. Interestingly, the sites available

small particles are omitted, one regains the hard hexagon
model [10], which has been solved exactly by Baxter
[11,12; it has a second-order ordering transition. Van Duijn-
eveldt and Lekkerkerker studied the binary model by means
of Monte Carlo simulation. They found three phases: dilute
disordered (ga9, dense disorderedliquid), and ordered
(solid). Fig. 2 shows this phase diagram, represented in terms
of the fugacitiesz; andz, of the large and small hexagons,
respectively. FIG. 1. Typical configuration of large and small hexagons.

Before we review the Monte Carlo method of Van Duijn-
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25 phase transition of the hard hexagon model. Lekkerkerker
2 (unpublishegl found that the averagﬁfzz(Nf/N>ﬁ1 can be
' G calculated exactly, as follows. Adding one hexagon to a con-
15 figuration of N, hexagons can be done N} ways. By doing
& this to all configurations oN; hexagons each configuration
10 S of N;+1 hexagons is obtained exacti; +1 times. Hence,
F
(NpR,Z°(Np) =(Ny+1)Z°(N; +1), (5)
0o 10 20 20 20 which in the thermodynamic limit yields
]
P1
FIG. 2. Phase diagram in the—z, plane calculated by Van Pf=z—1- (6)

Duijneveldt and Lekkerkerkdi7,8] from Monte Carlo simulations.
The lettersF, G, L, andS indicate the fluid, gas, liquid and solid

i This is an example of Widom’s famous particle-insertion
phase, respectively.

formula[14]. In the Appendix we apply this exact result in

f I h fv the sit h ddit the method of Van Duijneveldt and Lekkerkerker. In particu-
or small hexagons are exactly the sites where an adaitiongy,. - \ye show that the existence of a Van der Waals loop

!arge hexagon could be insgrted. Such s_ites are .c.alled freg. Elr,mot be concluded from its presence in the first order ap-
is easy to express the semigrand canonical partition funCt'oBroximant( 4)

Z(N1,2,) in terms of the canonical partition fupcti(ﬁ?(l\!l) . As the first derivatives of the thermodynamic functions
of the hard hexagon model and the probability dlSthbutIOﬂWith respect toz, are known in this way, we shall now

P(Ni|Ny) for the numbem; of free lattice sites in the hard attempt to calculate the locus of the phase transition in this
hexagon model, order. The difference between the large and small hexagons
_ >0 , is that two small hexagons may occupy neighboring sites,
Z(N1,2) =27 (N1)Z'(N1,22), @ whereas two large ones may not. At smalithe density of
where small hexagons is low, so that they will generally occur iso-
lated. Thus they cannot be distinguished from the large ones.
For the grand canonical partition function, this implies

Z'(N1,29)=2 P(NNp)(L+2)™, 2
N Z(21,2)=2%21+2,) +0(2,). (7)
After taking logarithms this gives the free energy, This suggests that the locus of the phase transition is given
, b
F(N1,2)=FO(Ny)+F' (N, 2,). @
z,=2{—2,+0(2), (8)

Van Duijneveldt and Lekkerkerker determine the probability

distributionp from canonical Monte Carlo simulations of the \ynere the superscriptrefers to the critical point of the pure

hard hexagon model. To determine accurately the wings ofiard hexagon model. The particle densities follow also,
the distribution an umbrella sampling technique is employed.

They calculatd=" from p, and for fixedz, fit a polynomial in z
p1: =N /N to this quantity. They obtain the free enerfy p1(21,29) = S ——-p1(Z1+2,) + 0(2) ©)
from Eq. (3), using Baxter's exact resuli.1,17 for F° and te

the fitted polynomial forF’. The fugacityz, of the large for the large hexagons, and similarly for the small ones.
hexagons and the pressieare calculated in the usual way Combining these results yields the density of the large hexa-
from F. Finally phase equilibrium is determined by looking gons at the phase transition,

for phases with equat; and P but differentp,. As this

calculation is carried out for fixer,, z, is also equal in the

phases. The resulting phase diagram is shown in Fig. 2. It p1= pit+0(2,). (10
has three branches: liquid—solid, gas—solid and gas-liquid.

The branches meet at the three-phase poirt; a22.5 and Equationg8) and(10) cannot be derived rigorously from Eg.

z,=1.89. (Van Duijneveldt and Lekkerkerker use the term 7) gione, but we conjecture that they are nevertheless valid.
triple point,” but, as that suggests the coexistence of three

phases where three first-order transitions meet, we prefer to
use the term “three-phase poinj.The gas-liquid end point

Z
1-=
Z;

Ill. TRANSFER-MATRIX APPROACH

is located atz; =13.3 andz,=1.36. Now we study the model through its row-to-row transfer
ExpandingZ’ to first order inz, gives matrix. For practical reasons, we work with sawtooth rows as
) 0 shown in Fig. 3. One advantage is that the high-density
Z'(N1,22) = 1+25(Np)y, +0(22). (4 ground state of the hexagons fits on the lattivhich has an

even number of siteswhereas for straight rows it does so
For a finite system we could have writt€(z3) instead of  only when the system size is a multiple of 3. Another advan-
0(z,), but in the thermodynamic limit this is not valid at the tage is that the transfer matrix can be built up by repeatedly
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(8] (V]
N N
FIG. 3. The transfer matrix adds one rdshadedl to the system. Z
1
adding one site, without increasing the total number of sites. (a)
Periodic boundary conditions are imposed on the rows. The
number of “teeth” is denoted byV, so a row contains \&/ FIG. 4. (@) Phase diagram with a fluid and solid phase. The

sites and has Iength=W\/§. The largest few eigenvalues critical line (fat) terminates at a tricritical point where the phase
of the transfer matrixin the zero-momentum secjowere transition becomes first-ordédouble ling. (b) Phase diagram with
calculated numerically foWW=2, ... ,5, using the power 9as, liquid, and solid phases. The critical lifiat) meets the first-
method. order transitiondouble ling at the three-phase point.

In the ordered regime there are in fact three coexistin%1

e o e e badas should behaue 3 folows. AL s e gapd
9 ' Y9 9 decreases with increasirzg, whereasAt has a minimum at

transfer matrix, dominated by these ordered phases: ong phase transitigs). For low z, [see the lower dashed

symmetric and two asymmetric for permutations among the. A
ground states. The symmetric vector has the largest eigeﬁl"—neS in Figs. 42 and 4b)], the scaled gapkAy andL A+

valueA - The asvmmetric vectors have a complex coniuaat will tend to a nonzero value when—« at the critical line.
. 0 y * P onjugate,, highz,, see the upper dashed lines; this is no longer the
pair of eigenvalues\,, and A}, . In the relevant region of

. . case: both scaled gaps tend to zero whenoo at the phase
the phase diagram the largest eigenvalues of the transfer M@ ansition, which is now first-order. On the middle dashed
trix turn out to beA,, Ay, andAy},, and another real eigen- '

X X line in Fig. 4b), Ay, changes rapidly at the gas-liquid tran-

value Ar. The phase behavior can be diagnosed from e - FurthermoreA; has two minima: at the gas-liquid

behavior of the gaps between the elgenv_alues\,,: transition and at the liquid-solid transition. When-, the

~ lmj.\o./AM' andAr:=In|Ag/Aq|, as the system sizetends minimum of the scaled gahA+ tends to zero at the gas—

toinfinity. _ liquid transition, but to a nonzero value at the liquid—solid
The gapA+ is an inverse correlation length between den-yansition. Thus the gas-liquid transition in Figh#can be

sity fluctuations. In the absence of a phase transition, the,.,.nized from the appearance of a sudden chande.in
bulk (L==) value of this length is finite and the value for and g second minimun?p(ﬁT. g

finite L approaches this bulk value whéntends to infinity. For z,=0.0,0.1 3.0 the scaled gapa,, andLA+
HenceA+ tends to a nonzero limit. At a critical point the e o i
bulk correlation length diverges and the value for firités
proportional toL. As a consequence of scale invariarce
decreases asll/ At a first-order transition with a change in
the density, howeven ; is not an inverse correlation length.
The eigenvalues\, and A+ are then asymptotically degen-
erate. Their gap\t is related to the interfacial tension be-
tween the coexisting phases. More precis@ly, decays as
exp(—ol), whereo is proportional to the interfacial tension
[15]. 5

For the gapA,, the situation is analogous. In the disor-
dered regime, it is an inverse correlation length, here be 4
tween fluctuations in the sublattice ordering. Thus the gag
approaches a nonzero valuelagrows. At a first-order tran-
sition between two disordered phases this correlation lengt <
is generally different in the two phases. Therefore, the values]
of Ay undergoes a sharp change through the transition, af = 2
proaching a jump as the system sizéncreases. At a critical
point the bulk correlation length diverges, so thgt decays
as 1L whenlL increases. In the ordered regime three phase
coexist, and the eigenvalues, and Ay, (and A})) are as-
ymptotically degenerateX,, decays exponentially with. At 0
a first-order transition between an ordered and a disordere
phase by the same toke), vanishes exponentially with.

We shall now distinguish between two scenaridsthere FIG. 5. Scaled gaptA, as a function ofz; on the linez,
are two phasefluid and solid as in Fig. 4a) and(ii) there =1.7.

re three phasdgas, liquid, and solidas in Fig. 4b). The

were plotted as a function of; for W=2, ... ,5. Figures
5-8 show examples of this. We found no indication that

has two minima. One could argue that two minima might be
fused to a single one for these relatively small systems; how-
ever, the sharpest and deepest minim{@nthe gas-liquid
transition is clearly absent. This pleads against the three-
phase scenario in favor of the two-phase scenario. We also
saw no sudden change 4, . However, even if a gas-liquid

3
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FIG. 6. Scaled gap&A; as a function ofz; on the linez, FIG. 8. Scaled gap&A; as a function ofz; on the linez,
=1.7. =2.3.

transition were present, the signal &), might be hard to  minimum was determined. The results #ot=5 andW=6

detect. are plotted in Fig. 10. In order to obtain the locus in the
The three-phase scenario can be obtained by introducing, —z, plane the density of large hexagons was computed

an extra parameter into the model. Assign a weighto  using

every lattice edge joining a small hexagon and an empty site.

For k=1 one recovers the original model. Fe=0 any d

contact between a small particle and an empty site is forbid- pl:Zl[;,_Zl(_ In Ao). (13)

den. In this limit the model either contains no small hexa-

gons at all or is completely filled with them. The regime (1 shoyid be noted that for such smai this does not seem
without small hexagons still exhibits the hard hexagon tranyy pe very accurate.Figure 11 shows the result. We ob-
s!tion as long as %z, is smaller than the partition SUM Per gerved that for fixed, the graphs o, versusz, for differ-

site of the hard hexagon model. Beyond this value the phasg,; system sizes pass approximately through one point. One

fi[led with small particles takes over. Thus_the ordered and. |4 ask whether this is the critical point, as would be the
disordered hard hexagon phases meet with the pure smallse i 5 self-dual model. The locus of the intersection of the

hexagon phase, where the phase transition between them t%rr'aphs forw="5 andW=6 is shown in Fig. 11. Figures 10

minates in a three-phase point. Foclose to zero, the model 2.4 11 also show the phase diagrams given by Van Duijn-
will still obey the three-phase scenario. Hekg is indeed  o\e/dt and Lekkerkerkeig].
found to have two minima, see Fig. @he maxima in this First-order and second-order transitions are not easily dis-

figure at first sight seem to be crossings of eigenvalues, bUtl"fhguished from each other by the numerical data. In both
very close look reveals that they are, in fact, roung@this casesA; has a minimum; only the dependence lowf the

supports our interpretation of the absence of a second mi”hepth of the minimum is different. Fap=1.7, the graphs of

mum in Ay as evidence against the three-phase scenario. o LA, pass approximately through one point, see Fig. 5.

The locus in thez,~2, plane of the phase transition can 1| A+ have a minimum that increases slowly withand
be estimated, for example, as the location of the minimum of

A+ . For fixedz, the value ofz; at which this gap takes its 16
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FIG. 9. Scaled gapt At as a function ofz; on the linez,
FIG. 7. Scaled gaptAy as a function ofz; on the linez, =1.3 in the model with extra parameter=0.6. The inset shows
=2.3. the deep minima in more detail.
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FIG. 10. Locus in the;—z, plane of the minimum of the gap FIG. 11. Locus in the,—2z, plane of phase transition calculated

At for W=5 (+) andW=6 (X) and phase diagram of Van Duijn- from W=5 (+) andW=6 (X), locus of the intersection of the
eveldt and Lekkerkerkefsolid ling). The asymptotg8) is also  graphs forw=5 andW=6 of p; versusz, (®), and phase dia-
shown. gram of Van Duijneveldt and Lekkerkerkésolid ling). The asymp-
tote (10) is also shown.

may converge to a nonzero value, see Fig. 6. This points to a
second-order transition. Fap=2.3, the graphs ofLA,, do d c d d c
not pass neatly through one point, see Fig. 7. The minimum W( b) =W( b)W( b)’ (12
of LA+ decreases with and may vanish asymptotically, see
Fig. 8. This points to a first-order transition. The behavior of
LAy, and LAt changes gradually betwee3=1.7 andz,
=2.3. Thus the value df, at the tricritical point is estimated c

( b) W

and these triangle weights are invariant under rotation,

el ol

a )_ (a c)
b ¢/ Vb (13

roughly to lie between 1.7 and 2.3.

By universality the limit values ot A, and LAt at the
phase transition are 72, and 2wx;, respectively, with
Xm=2/15 andx;=4/5 on the hard hexagon critical line ( =W
=4/5), andxy,=2/21 andx;=2/7 at the hard hexagon tri-
critical point (c=6/7), see, for instanc¢16]. On the critical
line close to the critical point one expects to find the tricriti- SO that the model is isotropic on the triangular lattice. The
cal values for small system sizes, but the critical values fomodel still has one parametéthe elliptic nome, but this
large sizes. The limits were also estimated from the graphs gfolvable line stays away from our phase diagram. For ex-
LAy, andLA+ for z,=0.0 (not shown andz,=1.7. Forz,  ample, at the critical point the triangle weights are
=0.0 we foundxy~0.14 andx;=0.80. This is in good
agreement with the critical values,=2/15 andx;=4/5. 0
For z,=1.7 we foundxy,~0.13 andxy~0.3. This agrees w 0 0
reasonably with the tricritical valuesy=2/21 and x5
=2/7, which are expected for small system size near the 0
tricritical point. W( )

0
=1, W( 1 O) =4.412,

0
)23.903, W( )23.129,

0 2 2

IV. RELATION TO AN A{? RSOS MODEL

2

Some properties of the large-and-small hexagon model W(2 2>:3-761’
are common with an exactly solvable model. In order to
make use of the exact solution we investigate if the tWQhich is not of the form
models are ever parametrically close. The sites of the large-
and-small hexagon model can be in three statéentpty), 1 0 0
(large hexagon or 2 (small hexagon For neighboring sites W( ) 1, W( ) 1/6
the combinations 1-1 and 1-2 are excluded. The same is 0
true for theL =7 case of the exactly solvabké? restricted
solid-on-solid model of Kuniba[17,18. This is an 0
interaction-round-a-face model on the square lattice. For a W 0
suitable choice of its spectral parameter, the condition on
neighboring sites extends to one of the diagonals of the
square face. The Boltzmann weight of the square face then W( 2 ) 1/2
factors into weights of the composing triangles: 2 '
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FIG. 13. (@) Large-and-small hexagon model can be mapped
L onto a Potts-like model by grouping the sites into blocks of three.

The numbers indicate the labeling of blocks and of the sites within

FIG. 12. Qualitative picture of the phage diagram _of the diluteig blocks.(b) The big hexagon model can be mapped onto a Potts-
three-state Potts model. The dense coexistence regmrk and  |ike model by dividing the sites into blocks of four. The numbers

the dilute regior(front) are separated by the three-state Potts criticali,gicate the labeling of the sites within the blocks. The blocks are
surface(shaded and the lower part of the first-order surfaget numbered as iffa).

shadefl These surfaces meet at a line of three-state Potts tricritical

points(left) and a line of_three-state Pots critical end poinight. coexisting dense phases vanishes. This critical sheet must
The upper part of the first-order surfageot shadefl separates a .. . : ; - L
in with the first-order surface in a line of multicritical

dilute and a dense disordered phase. It is bounded by a line of Isin§ . hev both f b dari h .
critical points. The fat dot indicates the four-state Potts critical oints, as they both form boundaries to the coexistence re-

point.

The nature of this multicritical line depends on the sign of

Application of the numerical transfer-matrix method from K. @s follows. Along the first-order sheet we can distinguish
Sec. I1l to this critical model shows that it is in the tricritical WO liné tensions, namely, that between two different dense

three-state Potts universality class. phases and that between a dense and the dilute phase. When
K <0 the interface between the dilute and the dense phases
V. RELATION TO THE DILUTE THREE-STATE costs less energy thgn that between.two of t_he dense phases.
POTTS MODEL However, on the critical surface the line tension between the

dense phases vanishes. As a consequence all line tensions
The large-and-small hexagon model is intimately relatedzanish simultaneously where the critical and first-order
to the dilute three-state Potts mod&B]. Because this rela- sheets meet &6<0. The separatrix between these two types
tion gives insight in the phase diagram we will consider itof phase transition is thus a tricritical line. Wh&>0 the
here in more detail. On every sijeof a two-dimensional dense-dense interface costs less energy than the dense-dilute
lattice with coordination numbev lives a variables; that  interface, so there remains a positive line tension between the
can take the values 0,1,2,3. Of these the stgte® take the dilute phase and the dense phases where the first-order sheet
role of local occupancy of one of the three sublattices of thaneets the critical surface, and the dense-dense interfacial
hard hexagon model, and the state-0 is neutral or vacant. tension vanishes. This results in a critical end point scenario:
The Hamiltonian of the dilute Potts model is The three-state Potts critical sheet terminates where it hits
the first-order sheet. The first-order sheet extends beyond this
_ _ line, separating a disordered dense phase from the dilute
H= <%> (85, 5,1 K 35,0950 L; 90 (19 phase. Obviously, & =0 the two scenarios come together,
and we conclude that the tricritical curve and the critical end
curve as well as the critical line terminating the dilute-
where the first sum is over nearest neighbor pairs of sites. Idisordered phase transition all meet in the four-state Potts
the parameter spac&(L,T) the model has a line of tricriti- critical point, marked as a dot in Fig. 12. This qualitative
cal points as well as a line of critical end poift®], see Fig.  description of the phase diagram of Ed4), though not
12. As we will argue below, it is fairly clear where these rigorous, is the simplest possible scenario, and has been cor-
come together, namely, in the critical point of the four-stateroborated by numerical studi¢9].

Potts model,K=0, L=0, and T=T,, where all the four These considerations are of interest for the large-and-
states are treated identically. small hexagon model because that can be mapped onto a
At T=0 there is a dilute phase witgj=0 whenvK model sufficiently similar to the dilute Potts Hamiltonian
+2L >0, while the three dense, or ordered phases associatétl4) that the arguments can be carried over. We divide the
with s;=1,2,3 coexist whewK + 2L <0. These phases ex- triangular lattice into triangular blocks of three sites each,
tend to nonzero temperatures so that a first-order surfadedicated in Fig. 183). Each block then has three sites,

separates the dilute region from the dense coexistence reshich we label 1, 2, and 3. We assign a spin variahléo
gion. This first-order surface will not remain precisely ateach block, as follows. When the sitein block j is occu-
vK+2L =0 for T>0, but by symmetry it does include tie pied by a large hexagon, the spin variable takes the value
axis,K=L=0. At high temperature the coexistence region iss;=o, while in all other casess;=0. For convenience of
bounded by a surface of three-state Potts critical pointspotation we consider one block varialbdg, in interaction
shaded gray in Fig. 12, where the line tension between thwith six neighborss; with 1<|j|<3, as shown in Fig. 13).
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The blocksg with j>0 contain two sites neighboring the site the previous case. We will use again varialjeslefined by
j of the central block, and the block | sits in the opposite Eg. (15). The central site of the block 0 is free if and only if
direction. To give an expression for the interaction we intro-p;=p,=ps;=1. Some combinations of states of neighboring
duce the variables blocks are excluded, described by precisely the same expres-
sion (16) as before. However, also some combinations of
Pi=(8s.0t 6 )(1= 6 )(1=ds , i), (19  next-neighboring blocks are excluded. For example, jsite
block —j and sitek of block —k in Fig. 13b) are second

o _ neighbors, so the combinatios. ;=j ands_ =k is ex-
wherei,j,k is a permutation of 1,2,3. Note thpf can only  ¢juded. We introduce a variable

take the values 0 and 1, and it signals if sitef the central
block is free. The spin states 1, 2, and 3 have weightbut

are excluded by some configurations of the neighboring A=170s 1105 ;27 05 5205 437 05 3% 41

blocks by the factor +265 185,205 3. (18)
[1-0s,.i(1=Pp]. (16)
Note thatg can only take the values 0 and 1, it signals if
In other words the statg,=j is not allowed whemp;=0.  there are no pairs_j=j ands_,=K. If sy#0 thens_;=]
The weight of the spin stat®=0 depends on the surround- ors_,=k is already excluded by the interaction between the
ing blocks and is given by the expression neighboring blocks 0 and-j or —k. Therefore, the exclu-
D1+ Pyt p sion of the combinatios_;=j ands_,=k can be taken into
(1+2zp)PL7P2rPbe, (17 account by including a factay in the weight of block 0 in

state 0. This weight is then given by

If this model would be precisely the dilute Potts model with
Hamiltonian (14) we could simply read off the value d&
and its sign would conclusively decide between a tricritical
point versus a three phase point. The interaction is, of course,
much more complicated than that of the dilute Potts modelln this way any exclusion between sites of next-neighboring
but the overall effect is that some combinations of unequablocks is absorbed in the weight of state O of the intervening
nearest neighbors are excluded or suppressed. As the statdlock.
is treated altogether different from the states 1, 2, and 3, itis This resulting model is strikingly similar to the Potts-like
difficult to judge the sign of the effective coupliigin Eq.  model above. The exclusion rules for pairs of neighboring
(14). blocks are identical and when we choage=z, the weight
However, this problem can be resolved because there is@f the spin states 1, 2, and 3 is the same. In both models the
model in the universality class and with the symmetry of theweight of the state 0 depends on the configuration of its six
four-state Potts model, which can be mapped to a very simineighbors, via expressioil7) and(19), respectively. When
lar model. Consider a one-species lattice gas on the triangwve further specify (# z,)%=(1+2) the weights fors,=0
lar lattice in which not only first neighbors but also secondare equal in the case that= p,= p3 andg= 1. In particular,
neighbors (at distance/3) cannot be occupied simulta- they are equal when the surrounding blocks are also in state
neously. We will refer to this model as the big hexagonO, because thep,;=p,=p;=1 andg=1.
model. For large values of the fugacitthis model will be It is the exclusion and suppression of configurations with
in an ordered phase in which one out of four sublattices iszinequal neighbors that determines an effective temper@ture
occupied preferentially. At low fugacity the symmetry be- and couplingK in Eq. (14). The large-and-small hexagon
tween the sublattices is unbroken. The phase transition isodel and the big hexagon model with the parameters as set
known to be in the four-state Potts universality class fromabove will have the same effective temperattyras all con-
the symmetry of its Landau—Ginzburg—Wilson Hamiltonianfigurations involving only spin states>0 have the same
[20,21. We are not aware of studies giving the critical weight between the two models. Only when a block bas
fugacity of this model, but we have seen numerically that it= 0, while one or more of its neighbors hase 0, the con-
is about half the value of the hard hexagon model. figurational weights between the two models can be differ-
The big hexagon model can be mapped exactly onto @&nt. In all such cases the weight in the big hexagon model is
Potts-like model very similar to the model above, as ex-smaller than that in the large-and-small hexagon model,
pressed in Eqs16) and (17). Now we take blocks of four which is easy to see from direct comparison of the expres-
sites as shown in Fig. 18), one in each sublattice. It is sions(17) and(19). Therefore, we can confidently claim that
convenient to label the spins in each block by the numbers Ghe effective couplingK is the greater in the big hexagon
1, 2, 3 as indicated. When the sjtén a block is occupied, model, as configurations with unequal neighbors of which
the block variable takes the valijieln addition, when none ones=0 are more strongly suppressed than in the large-and-
of the sites are occupied, the block variable is taken to be Gsmall hexagon model. However, since the big hexagon
Therefore, the weight of the statgs 0 is z and the weight model has the symmetry of the four-state Potts model,
of state O will again depend on the states of the neighboringlearly its effective couplind=0. Therefore, the effective
blocks. We again consider a block varialdg interacting K in the large-and-small hexagon model is necessarily nega-
with its neighbors, which are labeled in the same way as itive, which, as argued above, results in a tricritical scenario.

q(1+2)PiP2Pa, (19)
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vor of the two-phase scenario of Fig@t This contradicts in making Figs. 10 and 11. This work is part of the research
the earlier findings of Van Duijneveldt and Lekkerkerker Program of the Stichting voor Fundamenteel Onderzoek der
[7,8]. We propose the following explanation. Van Duijn- Materie (FOM), which is financially supported by the Ned-
eveldt and Lekkerkerker effectively calculate the free-energyerlandse Organisatie voor Wetenschappelijk Onderzoek
difference between the binary mixture and the pure hard )-
hexagons. They then look for phases of equal pressure and
fugacities but different composition. They do not calculate
the order parameter for the mixture. Their method has some It is instructive to follow the method of Van Duijneveldt
drawbacks. Firstly, it cannot detect second-order transitionsand Lekkerkerker using Eq$4) and (6) instead of Monte
because these do not involve a jump in the particle densitie€arlo results. Calculating the pressure from E4.gives
Secondly, it uses a polynomial fit for the free-energy differ-
ence, so that the total free energy still seems to possess the P=pP+
singularity of the pure hard hexagon model. Thirdly, whether
P exhibits a Van der Waals loop or not may depend sensii3
tively on p(N¢|N;). Thus the locus of the liquid—solid
branch in their phase diagram is a spurious consequence
the implicit assumption that the ordering transition remain
at fixed p, for small values ofz,. Their qualitative conclu-
sion that a gas—liquid transition is present relies on quantita- 25(y/5—1)
tive properties of the calculated phase diagram, viz. the lo- P= P°+4—sgr(p1—p‘i)|pl—p‘i
cations of the various branches. Figure 10 suggests that their 245

APPENDIX

Z,+0(25). (A1)

o bt
! dp1

axter [[12], p. 457 lists expansions around the critical

ﬁgint of several thermodynamic quantities of the pure hard

xagon model. Combining these expansions with Egjs.
Sand (A1) yields

|3/2

gas—liquid and gas-—solid branch together form the true

fluid—solid line and that the critical point of their gas—liquid +O[(Pl—Pi)z]]
branch is in fact the tricritical point. This agrees well with

the fact that Figs. 10 and 11 show enhanced size dependence
of the phase diagram near their gas—liquid critical point.
However, this point is located a,=1.36 (and z;=22.5),
whereas we estimate roughly ¥7,<<2.3 for the tricritical
point. Being unable to present a satisfactory explanation for (A2)
this discrepancy, we stress that our data do not signal

clearly determined locus of the tricritical point. It should also 5\, 0114 exhibit a Van der Waals loop, so that the transition
be noted that in our transfer-matrix calculations only very !

. . . .~ Jbecomes first-order as soonzgshecomes nonzero. That this
small system sizes have been considered. Going to signif ah

_ S Ergument is not valid can be seen by considering, for ex-
cantly larger systems might allow for more definitive quan—arnple
titative statements, but this requires much greater computa- ’
tional resources. f(x)=(x—2)%, (A3)

Other evidence comes from the relation with the dilute

three-state Potts model. The large-and-small hexagon model ] ) ]
can be mapped onto a Potts-like model. Another model, th¥hich we view as a function of, parametrically dependent
big hexagon model, whose phase behavior is known, cafnZ Expandingf to first order inz gives
also b_e mapped onto a Potts-like model. A comparison of the f(x)=x3—3x%z+0(2) (A4)
effective temperature and coupling constants between the
large-and-small hexagon model on the one hand and the bind for all nonzero values afthe functionx®— 3x?z of x is
hexagon model on the other hand indicates that the largedecreasing betweex=0 andx=2z. It is, however, a first-
and-small hexagon model should follow the two-phase sceerder approximant of ,(x), which for all values ofz is an
nario. increasing function ok.

1251E(pf>2|

C
27

+ p1— P52+ 0(p1—p)  Zo+0(2,).

#his suggests that for small nonzero valueg.othe pressure
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